skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nair, Sooraj Kumar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Characterization of paste flow is important in ensuring rheological control during printing. The interaction between the rheological characteristics and processing parameters are better studied through a combination of experimental and simulation tools. For fresh pastes and concrete, discrete element method (DEM)-based simulations are appropriate to provide insights into the particle scale processes occurring during extrusion-based printing, and to relate them to the macro-scale response of the entire system. In this paper, we model the extrusion process of a plain ordinary Portland cement (OPC) paste using DEM, and outline the methodology adopted to evaluate the linkage between particle scale processes and extrusion process. An analytical model for a frictional plastic material undergoing ram extrusion is also used in conjunction with the DEM model to arrive at the yield stresses and shaping stresses that enable efficient extrusion process, as a function of the material microstructure. 
    more » « less